
www.metoffice.gov.uk © Crown Copyright 2022, Met Office

OGC-API EDR

An introduction to the

Open Geospatial Consortium

Environmental Data Retrieval API

and how it differs from other OGC standards.

• Map Service

• Feature Service

• Coverage Service

OGC data retrieval web services

• Provides remote access to Feature datastores

• A Feature is a description of a real world object such as a road or river
gauge observation

• Utilises the CQL language to support complex queries

which provides support for operators such as: like, between, in -, +,*, /,=

• WFS, the latest iteration of the capability being OGC API Features

Feature Service

• Provides remote access to coverage datastores

• Coverage examples include raster images, digital elevation models and
Meteorological data cubes

• Supports sub setting by Trimming and Slicing

• WCS and OGC API Coverages providing the latest iteration

Coverage Service

• Serves georeferenced images

• Query interface independent of the underlying datastore

• Basic data value access provided by GetFeatureInfo functionality

• WMS with next generation being delivered by OGC API Maps

Map Service

• Existing standards designed for remote access to datasets

• Datasets often have domain and/or specific data structures

• Information increasingly used by experts from other domains

• Increasing requirement to `harden` API’s

• Data sources updating more frequently and increasing in size

Why a new API?

https://xkcd.com/927

Background

NetCDF4 NetCDF3

CF-NetCDF

HDF5 BUFR

TAC Bulletins
CREX

GRIB2

GRIB

CSV*

XML

IWXXM …and many more

GML

SHP

PostgreSQL

JSON*

TSV*

GeoTiff

GPKG

Parquet

* many variations exist and additional information is required to understand a response in the format

Oracle

• Treat all data as information at a location and time

• API authors decide how best to respond to the request

• Create separate path resources for each query function

• Don’t require support for all the query patterns

• Limit query parameter functionality to defining range values

OGC API EDR

• A Collection is a set of data that shares the same coordinate dimensions

(i.e. the same units of space, height and time​)

• All data in a collection must support the advertised format and coordinate

transformations

• An EDR collection behaves in much the same way as a database view

Data published as ‘Collections’

• id - Unique identifier for the Collection used in the URL

• title - Name of the Collection

• description - Brief text description of the Collection

• links - URLs to information relevant to the Collection

• extent - Spatio-Temporal bounds of the Collection

• data_queries - Definition of the EDR queries supported by the Collection

• parameter_names - Definition of the data parameters in the Collection

Data discovery

• Position - /collection/{collectionid}/position?

• Radius - /collection/{collectionid}/radius?

• Area - /collection/{collectionid}/area?

• Cube - /collection/{collectionid}/cube?

• Trajectory - /collection/{collectionid}/trajectory?

• Corridor - /collection/{collectionid}/corridor?

• Locations - /collection/{collectionid}/locations/

• Items - /collection/{collectionid}/items/

• Instances - /collection/{collectionid}/instances/

Query (Sampling) types

• Position - /collection/{collectionid}/instances/{instanceid}/position?

• Radius - /collection/{collectionid}/instances/{instanceid}/radius?

• Area - /collection/{collectionid}/instances/{instanceid}/area?

• Cube - /collection/{collectionid}/instances/{instanceid}/cube?

• Trajectory - /collection/{collectionid}/instances/{instanceid}/trajectory?

• Corridor - /collection/{collectionid}/instances/{instanceid}/corridor?

• Locations - /collection/{collectionid}/instances/{instanceid}/locations/

• Items - /collection/{collectionid}/instances/{instanceid}/items/

Query (Sampling) types (instances of collection)

Parameter metadata
• Description - A text label for the parameter

• Units

• Label – A text label for the units

• Symbol

• value - The symbol used to represent the units

• type – Unique identifier for the units (ideally an URI to a common shared registry)

• ObservedProperty

• id – Unique identifier for the parameter (ideally an URI to a common shared registry)

• Label – the formal name for the parameter

• MeasurementType

• Method – The statistical process involved in deriving the value

• Period – The time period that the process occurs over (defined as an ISO8601 period)

"air_temperature": {
"type": "Parameter",
"description": "Air temperature is the bulk temperature of the air, not the surface (skin) temperature.",
"unit": {

"symbol": {
"type": "https://qudt.org/vocab/unit/K",
"value": "K"

},
"label": "Kelvin"

},
"observedProperty": {

"id": "http://vocab.nerc.ac.uk/standard_name/air_temperature/",
"label": "Air temperature"

}
}

• COORDS – Spatial coordinates defined as Well Known Text (WKT)

• DATETIME* – time range based on the ISO8601 standards

• Z* – vertical range selection

• PARAMETER_NAMES – comma delimited list of the parameters

• F – Data format to return the data in

• CRS – Coordinate reference system to return the data in

(and also defines the CRS that COORDS values are defined in)

Queries built around core query parameters

* only when data has the dimensional component

coords=POINT(X Y)&z=Z1

Position: extract data for a point location

coords=POINT(X Y)

coords=POINT(X Y)&z=Z1,Z2,Z3,Z4

coords=POINT(X Y)&z=Z1/Z4

(Can also be combined with datetime)

Radius: extract data within a defined radius
(Can also be combined with datetime)

coords=POINT(x y)&within=r&within-units=u

coords=POINT(x y)&z=Z1&within=r&within-units=u

coords=POINT(x y)&z=Z1,Z2,Z3,Z4&within=r&within-units=u

coords=POINT(x y)&z=Z1/Z4&within=r&within-units=u

Area: extract data for a 2D geospatial domain
(Can also be combined with datetime)

coords= POLYGON(x1 y1, x2 y2, x3 y3, x4 y4, x1 y1))

coords= POLYGON(x1 y1, x2 y2, x3 y3, x4 y4, x1 y1))&z=Z1

coords= POLYGON(x1 y1, x2 y2, x3 y3, x4 y4, x1 y1))&z=Z1,Z2,Z3,Z4

coords= POLYGON(x1 y1, x2 y2, x3 y3, x4 y4, x1 y1))&z=Z1/Z4

Cube: extracts data for a 3D domain geospatial domain
(Can also be combined with datetime)

bbox=minX,minY,maxX,maxY&z=Z1/Z2

Trajectory: extracts data along a defined path

coords=LINESTRING(X1 Y1 , … Xn Yn)

coords=LINESTRING(X1 Y1 , … Xn Yn)

(can be combined with the z and datetime)

Trajectories can have more complex height and time coordinates

coords=LINESTRINGM(X1 Y1 T1, … Xn Yn Tn)

(can be combined with the z query parameter)

coords=LINESTRINGZ(X1 Y1 Z1, … Xn Yn Zn)

(can be combined with the datetime query parameter)

coords=LINESTRINGZM(X1 Y1 Z1 T1, … Xn Yn Zn Tn)

Corridor

• The same capabilities as the trajectory query but with extra values to define a corridor

• corridor-width

• width-units

• corridor-height

• height-units

Locations

• Named location identifiers for predefined Geospatial coordinates

• API provides capability to get list of identifiers and the definition of the
coordinates they represent

• Supports the other common query parameters i.e.
parameter-name, datetime, f

• There will always be a need to return predefined data objects

• /items lists the available data objects (each with a unique identifier id)

• /items lists can be filtered by bbox and datetime (with paging support)

• Objects requested by their identifier (/items/{identifier_id})

Items

Any questions?

